
Proceedings of the Taiwan Precision Technology Workshop, TPTW 2017 台灣雲林 國立虎尾科技大學

National Formosa University, Huwei, Yunlin, 24 November, 2017

Implementation of an Open Source Planar Linkage Mechanism

Simulation and Dimensional Synthesis System
Yuan Changa, Chiaming Yena

Department of Mechanical Design Engineering, National Formosa University a

Abstract — In this paper, an open source cross-

platform single-degree-of-freedom planar linkage

mechanism simulation and dimensional synthesis system,

called Pyslvs, is presented. The geometric constraint

solver of SolveSpace is used as one of the kernels in this

Python 3 and PyQt5 based software. Another kernel is

developed through the symbolic derivation by using the

SymPy module.

Given a series of tracking points and the type of the

planar four-bar linkage, the software can be used to

calculate feasible linkage topologies and associated

dimensions by using the real-coded genetic algorithm,

firefly genetic algorithm or differential evolution

methods. At the end of this paper, the typical crank-

rocker and Jansen’s linkage that demonstrate the

operation and simulation process are tested in the

Windows and Ubuntu operating systems.

Keyword: Open source software; Planar linkage mechanism

simulation; Dimensional synthesis.

INTRODUCTION

Toward the start of the advancement of numerous

mechanical products, it is generally required to simulate or

synthesize planar linkage mechanisms. Therefore, the related

computer aided simulation or synthesis software is

eventually an indispensable tool in the product development

process. The majority of the commercial computer-aided

mechanical design software can be utilized to analyze or

simulate the linkage mechanism, however without the

dimensional synthesis capabilities.

The motivation behind this study is to build up an open

source planar linkage mechanism simulation and four-bar

linkage dimensional synthesis package, called Pyslvs, would

like to wind up plainly a course instructing tool. The

simulation function is to extend the Solvespace Geometric

Constraint Solver (SGCS) and include a PyQt5 based

Graphics User Interface to enable user to simulate various

planar linkage system under the Windows and Ubuntu

operating systems [1].

In this paper, a set of triangular symbolic and numerical

formulation is also created to allow us to add dimensional

synthesis function to the package and can be utilized to

verify the corresponding simulation results from the SGCS

as well.

1.1 Related Works

The Geometric Constraint Solver (GCS) is usually the

main core of a parametric computer aided design software

package [2].

GeoSolver [3] and Solvespace [4] are the often mentioned

open source GCS written in C++. The open source JSketcher

[5] GCS is developed in JavaScript.

The Working Model [6] and Simulation and Analysis of

Mechanisms [7] are the most popular commercial software

for planar mechanism analysis while Planar Mechanism

Kinematic Simulator [8] 、Design Analysis and Synthesis of

compliant mechanisms [9] and Mechanism Designer and

Simulator [10] are similar open source packages.

The Real-coded Genetic Algorithm, RGA [11][12],

Firefly Genetic Algorithm [13][14][15] and Differential

Evolution, DE [16] methods are often used for the synthesis

and optimization of planar mechanisms.

CONCEPT & PLATFORM ARCHITECTURE

The architecture of Pyslvs software is shown in Fig. 1.

The core of this linkage simulation is a cross platform

Simplified Wrapper and Interface Generator (SWIG)

oriented SGCS shared libraries. The triangle constraint

solver formulation derived from the SymPy module is

provided as the base of fitness equations in the dimensional

synthesis module. The graphic user interface of Pyslvs is

written in PyQt5 and the program is developed on Eric6

integrated environment.

In the dimensional synthesis module, RGA, Firefly and

DE evolutional computation methods are used. All the

algorithms are firstly written in Python3 and augmented with

the Cython static type declarations to generate the associated

shared library for Python3 main program.

Fig.1 Pyslvs System Architecture

Proceedings of the Taiwan Precision Technology Workshop, TPTW 2017 台灣雲林 國立虎尾科技大學

National Formosa University, Huwei, Yunlin, 24 November, 2017

2.1 Solvespace Geometric Constraint Solver

In this section, the application of SGCS is presented to

show the basic concept of linkage simulation module in

Pyslvs.

The Fig. 2 shows a Crank-Rocker type four-bar linkage

with known link lengths, Point1 and Point2 coordinates. We

use the aforementioned SGCS library to track the path of

Point3 coordinate.

Fig.2 Four-bar Linkage Path Tracking

The pseudo source code for the linkage simulation

analysis of Pyslvs is as per the following:

Import slvs module

def crank_rocker(rot_angle, input_point_coordinate):

 create slvs system

 setup solver group

 add origin Point

 add normal vector on Sketch Plane

 add Workplane

 add Point1 and Fixed Constraint

 add Point2 and Fixed Constraint

 add Moving Reference Point and Fixed Constraint

 add Rotation Reference Line0

 add Track Point3

 add Point4, Point5 and Triangle Length Constraint

 add Rotation Link Line1

 add Angle Constraint between Line0 and Line1

 Solve all Constraints

 return Track Point3 Coordinate

The full source code of this program is shown on (SGCS

2_1 program, 2017), and the execution result is as follows:

Fig.3 Slvs library Python3 Path Tracking Application

2.2 Triangle Constraint Solver Formulation

In order to derivate the path tracking fitness equations for

the dimensional synthesis module of Pyslvs, the SymPy

module is utilized. In the accompanying, two triangle based

constraint solver equations are displayed.

2.2.1 PLAP Solver Derivation

Fig.4 PLAP and PLLP Solver Constraints

PLAP: As appeared in Fig. 4, the Point a coordinates, ac

link Length, rotational Angle bac and the Point b coordinates

are known. By using the SymPy symbolic module, Point c

coordinates can be derived as takes after:

Proceedings of the Taiwan Precision Technology Workshop, TPTW 2017 台灣雲林 國立虎尾科技大學

National Formosa University, Huwei, Yunlin, 24 November, 2017

2.2.3 Application of Triangle Formulation

Fig.5 Four-bar Linkage Triangle Decomposition

This section describes how to utilize the PLAP and PLLP

definitions to create a Crank-Rocker type of four-bar linkage

program as appeared in Fig. 5.

def crank_rocker(angle, p1x, p1y, p2x, p2y, len1, len2,

len3, len4, len5):

 p4x, p4y = plap(p1x, p1y, len1, angle, p2x, p2y, 0)

 p5x, p5y = pllp(p4x, p4y, len2, len3, p2x, p2y, 0)

 p3x, p3y = pllp(p4x, p4y, len4, len5, p5x, p5y, 0)

 return p3x, p3y

The full source code of this program is shown on

(Triangle 2_1 program, 2017), and the execution result is as

follows:

Fig.6 Path Tracking Using Triangular Formulations.

2.2.3 Application of Triangle Formulation

In this section, the evolution design process of the four-

bar linkage dimensional synthesis function is introduced.

The RGA, DE and Firefly evolutionary design process

can be characterized as follows:

1. Generate the initial population.

2. Evaluate the fitness of each member.

3. Crossover, recombination or move fly.

4. Mutation, generate random vectors or random values.

5. Selection and check whether the termination condition is

met.

6. If the condition is not reached, generate new group and

got to step 2 until reach the condition.

The UML diagram of these three synthesis pro-grams is

indicated in Fig. 7. Although different method has different

reproduction, selection and randomness strategies, main

basic procedure to converge to best combination of design

variables are actually quite similar.

Proceedings of the Taiwan Precision Technology Workshop, TPTW 2017 台灣雲林 國立虎尾科技大學

National Formosa University, Huwei, Yunlin, 24 November, 2017

Fig.7 UML of RGA, Firefly and DE programs.

After three evolution synthesis Python3 pro-grams were

created, the Cython technology is utilized to compile these

programs into shared library to speed up the execution.

EXAMPLES OF PYSLVS

In this section, Pyslvs examples are presented which

include the Jansen’s walking mechanism and four-bar

linkage dimensional synthesis.

3.1 Planar Linkage Simulation

The following describes the basic flow of planar link

mechanism simulation using Pyslvs as shown in

(https://vimeo.com/218628564):

Fig.8 Jansen’s Linkage on Pyslvs

1. Use File pull-down menu to open a “New Workbook”.

2. Press mouse right button on drawing area to add seven

points as shown on Fig. 8.

3. Use “Draw -> New Linkage” to add link connects

associated points and “Draw -> New Stay Chain” to add

two set of three point links.

4. Under “Simulate” tab press mouse right button toto add a

“driver shaft”.

5. Under “Point Coordinate” tab, use mouse right button to

select Point3 and edit the attribute of Point3 to be fixed.

6. Under “Panel” tab, press “Drive Shaft” and “Play” to

activate the drive shaft to simulation.

3.2 Six-Point Four-bar Linkage Synthesis

Next the dimensional synthesis process of four-bar

linkage passing six-point is presented as shown in

(https://vimeo.com/218428757). The operations are as

follows:

Fig.9 Six-Points Dimensional Synthesis

1. Use “File” pull-down menu to open a “New Workbook”.

2. Use left mouse button click “Panels” tab.

3. Click “Path Solving” button.

4. Press right mouse button on drawing area to add six “path

points” as shown on Fig. 9.

5. Click “generate” button under “Path Solving” tab to bring

up the “Dimensional Synthesis” window.

6. Click “Start” to do synthesis computation.

7. When computation reach 1500 generations, click “Chart”

to exam error.

8. Click “merge” button to open synthesis result on the

drawing area.

3.3 Ten-Point Four-bar Linkage Synthesis

When the number of passing point increases to 10 points,

after the DE evolutionary operation of 1500 generations,

from the error value screen, the obvious error value

remained, i.e. there are two input points are not closely

passed as shows in Figure 10. In other words, as the number

of passing points increase, longer computation time is

https://vimeo.com/218628564

Proceedings of the Taiwan Precision Technology Workshop, TPTW 2017 台灣雲林 國立虎尾科技大學

National Formosa University, Huwei, Yunlin, 24 November, 2017

needed. The operation process is displayed in

(https://vimeo.com/218428847):

Fig.10 Ten-Points Dimensional Synthesis

CONCLUSIONS

In this study, an open-source planar linkage mechanism

simulation and four-bar dimensional synthesis system, i.e.

Pyslvs, is developed. The executable files for Windows and

Ubuntu operating system as well as source codes can be

downloaded from (http://pyslvs.com).

This program has the following characteristics:

1. The Solvespace GCS library developed in this research

can be utilized independently with other Python3 program

application.

2. The triangle geometric solver formulation can be

extended to dynamic analysis of the mechanism, in

addition to the dimensional synthesis.

3. Affirmed that the combination of SWIG and Cython

technology let C + + and Python3 program development

advancement with great performance.

REFERENCES

[1] Pyslvs, May 2017, http://pyslvs.com

[2] Bouma, W. et al., 1995. A Geometric Constraint Solver.

Computer Aided Design. 27, 6 (June), 487-501.

[3] GeoSolver, May 2017, http://geosolver.sourceforge.net

[4] Solvespace, April 2017, http://solvespace.com

[5] JSketcher, April 2017, https://github.com/xibyte/jsketcher

[6] Working Model 2D, April 2017, https://goo.gl/EyHa2q

[7] Sam, April 2017, http://www.artas.nl/en/sam

[8] PMKS, April 2017, http://designengrlab.github.io/PMKS

[9] Das-2d, April 2017, https://goo.gl/xPQc1u

[10] Linkage, April 2017, https://goo.gl/3RnNLP

[11] Erbatur F. et al., Optimal design of planar and space

structures with genetic algorithms, Computers and Structures,

75 (2000) 209-224.

[12] Omer A. Shpli, Jordan, Genetic Algorithms in Synthesis of

Path Generator Four-bar Mechanism with Maximum

Mechanical Advantage, Proceeding, The 16th IASTED

International Conference on Applied Simulation and

Modelling, 154-161, 2007.

[13] Amir H. G. et al., Mixed variable structural optimization

using Firefly Algorithm, Computers and Structures 89 (2011)

2325–2336.

[14] Mohammad K. et al., Firefly-inspired Algorithm for Discrete

Optimization Problems: An Application to Manufacturing

cell Formation, Journal of Manufacturing Systems, 32 (2013)

78–84.

[15] Srivatsava P.R. et al., Optimal Test Sequence Generation

using Firefly Algorithm, Swarm and Evolutionary

Computation, 8 (2013) 44–53.

[16] Sanjay B. Matekar a, Gunesh R. Gogate, Optimum Synthesis

of Path Generating Four-bar Mechanisms using Differential

Evolution and a Modified Error Function, Mechanism and

Machine Theory, 52 (2012) 158–179.

[17] Arnaud Fabre , Pascal Schreck, Combining Symbolic and

Numerical Solvers to Simplify Indecomposable Systems

Solving, Proceedings of the 2008 ACM symposium on

Applied computing, March 16-20, 2008, Fortaleza, Ceara,

Brazil.

[18] Christophe Jermann, Gilles Trombettoni, Bertrand Neveu,

Pascal Mathis. Decomposition of Geometric Constraint

Systems: a Survey, International Journal of Computational

Geometry and Applications, 2006, 16 (5-6), 379-414.

[19] Christoph M. H. and Robert J. A., Symbolic Constraints in

Constructive Geometric Constraint Solving, Journal of

Symbolic Computation, 23 (2-3), 287-299, 1997.

[20] Crank Rocker Simulation, https://vimeo.com/218413184

[21] Duanling Li, Zhonghai Zhang and J. Michael McCarthy, A

constraint graph representation of metamorphic linkages,

Mechanism and Machine Theory, 46 (2011) 228–238.

[22] Glenn A. Kramer, Solving Geometric Constraint Systems,

AAAI-90 Proceedings, 1990.

[23] Hadizadeh S. Kafash, A. Nahvi, Optimal Synthesis of Four-

bar Path Generator Linkages using Circular Proximity

Function, Mechanism and Machine Theory, 115 (2017) 18–

34.

[24] Jansen Linkage Simulation, https://vimeo.com/218628564

[25] Joan Arinyo R., Soto A., A Correct Rule-based Geometric

Constraint Solver, Computers and Graphics, v.21 n.5, p.599-

609, September, 1997.

[26] Juan-Arinyo, R. and Soto, A. 1995. A rule-constructive

geometric constraint solver. Tech. Rep. LSI-95-25-R, Univ.

Politecnica de Catalunya.

[27] Lucas Weihmann et al., Modified Differential Evolution

Approach for Optimization of Planar Parallel Manipulators

Force Capabilities, Expert Systems with Applications, 39

(2012) 6150–6156.

[28] MechAnalyzer, April 2017, https://goo.gl/f8bYXh

[29] Radovan R. Bulatovic and Stevan R. Dordevic, On the

Optimum Synthesis of a Four-bar Linkage using Differential

Evolution and Method of Variable Controlled Deviations,

Mechanism and Machine Theory, 44 (2009) 235–246.

[30] Reyes Pavón et al., An Adjustment Model in a Geometric

Constraint Solving Problem, Proceedings of the 2006 ACM

symposium on Applied computing, April 23-27, 2006, Dijon,

France.

[31] SGCS 2_1 program, May 2017, https://goo.gl/Weaa1D

[32] Triangle 2_1 program, May 2017, https://goo.gl/AThAH6

https://vimeo.com/218428847
http://pyslvs.com/
http://pyslvs.com/
http://geosolver.sourceforge.net/
http://solvespace.com/
https://github.com/xibyte/jsketcher
https://goo.gl/EyHa2q
http://www.artas.nl/en/sam
http://designengrlab.github.io/PMKS
https://goo.gl/xPQc1u
https://goo.gl/3RnNLP
https://vimeo.com/218413184
https://vimeo.com/218628564
https://goo.gl/f8bYXh
https://goo.gl/Weaa1D
https://goo.gl/AThAH6

